Abstract

This research investigates the scheduling of tasks in real-time to optimize energy use in the context of integrating renewable energy sources into the smart grid. The primary goals are to analyze the influence of fluctuations in renewable energy on grid synchronization, evaluate the efficiency of different optimization methods, and identify significant obstacles and corresponding remedies. Secondary data studies advanced forecasting methods, energy storage systems, and optimization techniques, including Linear Programming (LP), Dynamic Programming (DP), and metaheuristics. The significant findings show that renewable energy fluctuations affect power system stability. Advanced prediction methods and energy storage are essential in reducing these impacts. Optimization approaches enhance the scheduling efficiency, but the computational complexity and practical application constraints limit their effectiveness. Challenges such as frequency regulation, voltage management, and integrating Distributed Energy Resources (DERs) need specific solutions such as dynamic voltage support and grid modernization. The policy implications include supporting advanced technologies, encouraging real-time scheduling system research, and enhancing grid infrastructure to increase resilience. These measures are essential for integrating renewable energy, ensuring a reliable smart grid, and achieving a sustainable future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.