Abstract

This article presents a Fault Detection (FD) method to deal with propeller faults on multirotor drones in real-time. Several solutions have been proposed in the literature, however, they depend on additional sensors and/or dedicated hardware to deal with heavy computational complexity. So, they cannot be implemented in off-the-shelf commercial devices, i.e., without the aid of additional on-board sensors and/or extra computational power. The proposed method, instead, requires the on-board Inertial Measurement Unit (IMU) data only: by combining Finite Impulse Response (FIR), together with sparse classifiers, only a subset of the features is actually needed online and the FD is thus feasible in real-time.Design and tests are based on real flight data from a hexarotor, equipped with a conventional ArduPilot-based controller. The classification accuracy in testing is up to 93.37% (98.21%) with a binary tree (Linear Support Vector Machine (LSVM)). Moreover, the space and time complexity of the proposed method is low: on a PixHawk Cube flight controller, it requires less than 2% of the cycle time, and can then run in real-time. Finally, the proposed fault detection solution is model-free and it can be easily generalized to other multirotor vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.