Abstract

A wheel-legged mobile robot (WLMR) has both leg and wheel structures. WLMRs have adaptability advantages because they can change locomotion methods depending on the terrain. However, the location of a WLMR's center of gravity (CoG) is very high; thus, almost all existing WLMRs move statically. In this paper, whole body motion generation and various control systems are studied to facilitate higher WLMR mobility. To this end, a zero moment point (ZMP) is introduced as a stability index. In addition, WLMRs are modeled as single point mass linear inverted pendulums. Subsequently, online CoG pattern generation methods are proposed; one is a preview control approach, and a second is an approach that realizes the desired ZMP pattern using a zero-phase low-pass filter. It is then possible to generate the desired CoG patterns more easily and faster than with a preview control approach. The CoG patterns based on the single point model are constructed via the resolved-momentum-control approach. Finally, the effectiveness of the whole body motion pattern generated by the proposed methods is validated by simulations and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.