Abstract

Powering small islands with reliable, affordable, and green electricity is a big challenge due to their dispersed geographical location with limited number of consumers and the heavy dependence on fossil fuels. This paper aims to address this challenge of reducing dependency on fossil fuel generators by providing an easy and feasible solution using available and accessible energy resources. The proposed method utilizes the bidirectional energy transfer mechanism available in electric boats (EBs) to support the consumers’ power demand. It proposes a new real-time load-support (RTLS) system with a coordinated control using EBs, community generators, and battery energy storage systems. It analyzes the management of the intermittent source-dependent small-scale grid in real time, under various weather, load, and battery state-of-charge conditions. The RTLS system coordinates the customers’ load demand with the available EBs, photovoltaics, and battery storage to provide efficient load support and to regulate the bus voltage and frequency. The efficacy of the proposed system is validated both computationally in a real network and in a laboratory setup. It is found that this novel system can substantially reduce the grid load demand and maintain the power quality under various load/source uncertainties and fault conditions. The system robustness is also evaluated considering undesirable conditions, such as severe three-phase faults and sudden EB disconnections. The performance of the proposed method is compared with that of the day-ahead load management approach to validate its effectiveness under various scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.