Abstract
In Tata Steel Ltd.- India, the calcined lime produced in the Merz-kiln is stored in the respective bins for its further use in steel making at LD shops. The quality of lime controls the quality of steel, refractory life and productivity. It also helps in removing the impurities during the steel-making process. Longer and inefficient storage of calcined lime results into degradation of the lime quality due to air slaking and fines generation. To optimize the storage time, a model has been developed which tracks the live charging, storage and discharging of lime at each respective bin. The model further gives recommendations in the form of preferences for charging and discharging of the bins. Python has been used as a tool for the model development. By the integration of level 1 and level 2 automation, it has become easier to achieve this aim by using data from sensor devices. Level 1 sensors have been installed in each respective bin to get the information about the level of materials inside the bin. Further this crucial data is stored in level 2 automation system to use it in the model. Model’s result shows the live tracking of calcined-lime stored in the bins. It generates a logical layer of material inside the bin and provides the age (storage time in hours) of each layer. Based on the age of layers, model gives the preferences for charging and discharging of the bins. Eventually It provides a decision-making platform to the plant user based on preferences for better lime-storage management. The system developed also contains a HMI (Human-machine interface) where user can visualize the live tracking and preferences for each bin given by the model. The system also captures the action taken by the user based on model’s preferences. Ultimately, it optimizes the storage time and controls the lime quality inside the bin. Eventually, it also controls the degradation of lime quality due to long storage. The model has been validated quantitatively with the real-time data of processing plant captured by the level 1 sensors. The result shows that model is able to track the level of material inside the bin, age of each layer and its storage duration. The result also shows the name of preferred bins to be charged/discharged to optimize the storage duration. As per requirements, the calcined lime stored in the bins is drawn to use it in the steel-making process.
Highlights
Lime is produced from lime stone having at least 50% calcium carbonate and various impurities [4]
This study aims to track the bin-level with a goal to optimize the storage time for controlling the degradation of lime quality
Development of this model and human-machine interface provides a decision-making platform to the operator to know which bin should be charged (loaded with lime) or discharged (unloaded) first
Summary
The steel making process uses calcined lime as basic flux [2]. It is produced in Merz-kiln during a chemical reaction by burning of limestone (CaCO3) as shown in (1) [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.