Abstract

BackgroundIntra-fraction motion represents a crucial issue in the era of precise radiotherapy in several settings, including breast irradiation. To date, only few data exist on real-time measured intra-fraction motion in breast cancer patients. Continuous surface imaging using visible light offers the capability to monitor patient movements in three-dimensional space without any additional radiation exposure. The aim of the present study was to quantify the uncertainties of possible intra-fractional motion during breast radiotherapy.Material and methodsOne hundred and four consecutive patients that underwent postoperative radiotherapy following breast conserving surgery or mastectomy were prospectively evaluated during 2028 treatment sessions. During each treatment session the patients’ motion was continuously measured using the Catalyst™ optical surface scanner (C-RAD AB, Sweden) and compared to a reference scan acquired at the beginning of each session. The Catalyst system works through an optical surface imaging with light emitting diode (LED) light and reprojection captured by a charge coupled device (CCD) camera, which provide target position control during treatment delivery with a motion detection accuracy of 0.5 mm. For 3D surface reconstruction, the system uses a non-rigid body algorithm to calculate the distance between the surface and the isocentre and using the principle of optical triangulation. Three-dimensional deviations and relative position differences during the whole treatment fraction were calculated by the system and analyzed statistically.ResultsOverall, the maximum magnitude of the deviation vector showed a mean change of 1.93 mm ± 1.14 mm (standard deviation [SD]) (95%-confidence interval: [0.48–4.65] mm) and a median change of 1.63 mm during dose application (beam-on time only). Along the lateral and longitudinal axis changes were quite similar (0.18 mm ± 1.06 mm vs. 0.17 mm ± 1.32 mm), on the vertical axis the mean change was 0.68 mm ± 1.53 mm. The mean treatment session time was 154 ± 53 (SD) seconds and the mean beam-on time only was 55 ± 16 s. According to Friedman’s test differences in the distributions of the three possible directions (lateral, longitudinal and vertical) were significant (p < 0.01), in post-hoc analysis there were no similarities between any two of the three directions.ConclusionThe optical surface imaging system is an accurate and easy tool for real-time motion management in breast cancer radiotherapy. Intra-fraction motion was reported within five millimeters in all directions. Thus, intra-fraction motion in our series of 2028 treatment sessions seems to be of minor clinical relevance in postoperative radiotherapy of breast cancer.

Highlights

  • Intra-fraction motion represents a crucial issue in the era of precise radiotherapy in several settings, including breast irradiation

  • Overall, the maximum magnitude of the deviation vector showed a mean change of 1.93 mm ± 1.14 mm (95%-confidence interval: [0.48–4.65] mm) and a median change of 1.63 mm during dose application

  • Intra-fraction motion in our series of 2028 treatment sessions seems to be of minor clinical relevance in postoperative radiotherapy of breast cancer

Read more

Summary

Introduction

Intra-fraction motion represents a crucial issue in the era of precise radiotherapy in several settings, including breast irradiation. Modern radiotherapy (RT) techniques including intensity modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT) or hypofractionated radiotherapy regimens have been introduced in breast cancer irradiation. These technological and technical improvements in RT require an accurate and reliable patient positioning. Patient movements during breast cancer radiotherapy and especially during dose delivery have been limited in scope in clinical context, it might have an impact on adequate planning target volume (PTV) setup margins.[5, 6] Nowadays, optical surface imaging offers the possibility to monitor patient movements in real-time using a non-invasive approach without any additional radiation exposure. The mean baseline drift was 0 ± 0.7 mm in right-left, − 0.5 ± 1.7 mm in inferior-superior and − 1.4 ± 1.8 mm in posterior-anterior direction. [12] Gaisberger et al used 3D body surface imaging and noticed intrafractional shifts of 1.2 ± 0.7 mm during the first 2 min of observation. [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.