Abstract

Color Doppler optical coherence tomography (CDOCT) is a functional extension of optical coherence tomography (OCT) that can image flow in turbid media. We have developed a CDOCT system capable of imaging flow in real time. Doppler processing of the analog signal is accomplished in hardware in the time domain using a novel autocorrelation technique. This Doppler processing method is compatible with a high speed OCT system capable of imaging in real time. Using this system, we demonstrate cross-sectional imaging of bidirectional flow with CDOCT at four frames per second in a tissue-simulating phantom consisting of intralipid solution flowing in glass capillaries. As a demonstration of real-time imaging of blood flow in vivo we imaged pulsatible blood flow in a rat femoral artery at eight frames per second. Issues of velocity sensitivity, imaging speed, and range of velocity measurement are discussed, as well as potential applications of real-time CDOCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.