Abstract

ObjectiveA novel method to measure the real-time input flow impedance of thoracic aorta aneurysm (TAA) was developed. MethodsThe fundamental of real-time input flow impedance was described. The simultaneously measured blood pressure and volumetric flow rate were obtained and used for the calculation. The input flow impedance was then presented in its complexed format: real and imaginary; modulus and phase in the time domain. ResultsUnique features of real-time input flow impedance were extracted to correlate with the TAA formation. It showed that the trough of modulus located at the end of each cardiac cycle has different values, which are proportional to the sizes of TAAs. ConclusionsA real-time input flow impedance of the cardiovascular system was presented in this paper. We postulate that the proposed fluid mechanics model has the potential to analyze the pathomechanics of aneurysmal diseases in real-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.