Abstract
Social networking services are becoming increasingly popular during the daily lives of Internet citizens, especially since the advent of smart mobile devices with integrated utility modules such as 4G/WIFI connectivity, global positioning services, cameras, and heart beat sensors. Many devices are available for sharing information at any time, which can be listed by posting a photo, sharing a status, or narrating an event. The behavior of users means that the flow of data (or a social data stream) has real-time characteristics, which actually comprise notifications about your friends’ posts after a short delay for diffusion over the network. The data stream contains news pieces related to real social facts as well as unfocused information. In addition, important information (or events) attracts more public attention, which is demonstrated by the number of relevant messages or communication interactions between people interested in specific topics. From a technical perspective, the characteristics of data in the aforementioned scenario provide us with an opportunity to construct a model that can automatically determine the occurrence of events based on a social data stream. In this study, we propose an approach to solve the problem of early event identification, which requires appropriate approaches for processing incoming data in terms of the processing performance and number of data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.