Abstract

Currently the most sensitive method for localizing lung cancers in central airways is autofluorescence bronchoscopy (AFB) in combination with white light bronchoscopy (WLB). The diagnostic accuracy of WLB+AFB for high grade dysplasia (HGD) and carcinoma in situ is variable depending on physician's experience. When WLB+AFB are operated at high diagnostic sensitivity, the associated diagnostic specificity is low. Raman spectroscopy probes molecular vibrations and gives highly specific, fingerprint-like spectral features and has high accuracy for tissue pathology classification. In this study we present the use of a real-time endoscopy Raman spectroscopy system to improve the specificity. A spectrum is acquired within 1 second and clinical data are obtained from 280 tissue sites (72 HGDs/malignant lesions, 208 benign lesions/normal sites) in 80 patients. Using multivariate analyses and waveband selection methods on the Raman spectra, we have demonstrated that HGD and malignant lung lesions can be detected with high sensitivity (90%) and good specificity (65%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.