Abstract

We theoretically investigate the real-time emission spectrum of a two-level atom coupled to an optomechanical cavity (OMC). Using quantum trajectory approach we obtain the single-photon time-dependent spectrum in this hybrid system where the influence of a strong atom-cavity coupling and a strong optomechanical interaction are studied. We find a dressed state picture can explain the spectra by predicting the exact peak locations as well as the relative peak heights. In our analysis we also include the effect of mechanical losses (under weak mechanical damping limit) and single-photon loss through spontaneous emission from the two-level emitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.