Abstract

Six water-soluble europium complexes (Eu-L1-P(n) and Eu-L2-P(n), n = 1, 2 and 3) with one antenna chromophore, two different linkers (L1 and L2) and three proposed cyclin A specific peptides (P1: -GAKRRLIF-NH2; P2: -GGAKRRLIF-NH2; P3: -Hex- GAKRRLIF-NH2) have been synthesized. With structural information available, comparisons of the cyclin grooves of cyclin A and the six europium complexes have been made, and insights have been gained into the determinants for peptide binding and the foundation of differential binding. Experiment-wise, the linear and two-photon induced photophysical properties of these conjugates were monitored in aqueous solution. Numerous in situ/in vitro biological assays have been carried out, such as responsive emission changes in situ/in vitro, Western blot and cellular uptake. As imaging agents, complexes with peptides P3: -Hex-GAKRRLIF-NH2 showed high selectivity to cyclin A in numerous cancer cells. When it comes to responsive optical signal changes, complex Eu-L2-P3 exhibited a threefold emission enhancement upon binding with cyclin A (100 nM cyclin A, ϕ = 8% to 21%, log KB = 5.83, detection limit = 5 nM), and this could be initiated by the shortened distance between the antenna and the lanthanide after they bind/get into cyclin A. It is promising that our compounds (especially compound Eu-L2-P3) could serve as the template for structure-guided efforts to develop potential imaging therapeutics on the basis of selective imaging of CDK2/cyclin A activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.