Abstract

Abstract Real-time evaluation of laser-driven byproducts is crucial for state-of-the-art facilities operating at high repetition rates. This work presents real-time measurements of hard X-rays (bremsstrahlung radiation) generated from the interaction of high-intensity laser pulses with solid targets in the target normal sheath acceleration regime using a scintillator stack detector. The detector offers insights into the effectiveness of laser–plasma interaction through measured fluctuations in bremsstrahlung radiation temperature and scintillation light yield on a shot-to-shot basis. Moreover, a strong correlation of the bremsstrahlung measurements (i.e., temperature and yield) with the cutoff energy of laser-driven protons was observed. The scintillator stack detector serves not only as a diagnostic for online monitoring of the laser–plasma interaction but also as a promising tool for estimating proton energy fluctuations in a non-disruptive manner, which is particularly important when direct proton source characterization is impractical, for example, during experiments aimed at irradiating user samples with the accelerated proton beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.