Abstract

Lipid droplets (LDs) are highly dynamic organelles, undertaking many important functions such as maintaining lipid metabolism and cellular homeostasis. Traditional methods to analyze LD dynamics focus on morphological changes, while chemical dynamics cannot be easily probed with traditional analytical chemistry techniques. To overcome this challenge, we show here how our phase-guided Raman sampling method, where high-resolution phase microscopy images direct a Raman sampling beam, can perform label-free, multimodal characterization of LD dynamics in living cells at both the single-cell and single-LD levels with submicron accuracy and high temporal resolution. We demonstrate the study of the morphological-compositional dynamics of human hepatocellular carcinoma cells (PLC cells) under different environmental conditions and with and without fatty acid supplementation, providing insight into LD heterogeneity and heterogeneity of response. Finally, we introduce a measurement method for the dynamics of cell-average LD composition, which can quickly and accurately characterize the lipid dynamics at the single-cell level with <30 s temporal resolution. The results here show the promise of the phase-guided Raman sampling method for dynamic morpho-chemical profiling of organelle populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.