Abstract
Ferromagnetic insulators may exhibit magnon Hall effects when subjected to a temperature gradient due to the Dzyaloshinsky–Moriya interaction. In this study, we investigate the magnon thermal Hall conductivity κxy of kagome ferromagnets in real space using the kernel polynomial method. We first establish the formalism in real space within the framework of linear response theory, which enables efficient numerical calculations of thermal transport properties under various imperfections. The validity and accuracy of the real-space approach are confirmed by comparing the calculations with those obtained in momentum space. This approach is particularly advantageous for computing the thermal transport coefficients of disordered lattices. We consider two types of disorder in kagome ferromagnets and observe that both types significantly influence κxy across the entire temperature range. This is in contrast to the effects of strains, where strains primarily impact the maximum values of κxy .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.