Abstract
We classify real hypersurfaces with isometric Reeb flow in the complex quadrics Qm = SOm+2/SOmSO2, m ≥ 3. We show that m is even, say m = 2k, and any such hypersurface is an open part of a tube around a k-dimensional complex projective space ℂPk which is embedded canonically in Q2k as a totally geodesic complex submanifold. As a consequence, we get the non-existence of real hypersurfaces with isometric Reeb flow in odd-dimensional complex quadrics Q2k+1, k ≥ 1. To our knowledge the odd-dimensional complex quadrics are the first examples of homogeneous Kähler manifolds which do not admit a real hypersurface with isometric Reeb flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.