Abstract

Children with dyslexia are extremely slow at reading long words but they are faster with stimuli composed of roots and derivational suffixes (e.g., CASSIERE, ‘cashier’) than stimuli not decomposable in morphemes (e.g., CAMMELLO, ‘camel’). The present study assessed whether root length modulates children’s morphological processing. For typically developing readers, root activation was expected to be higher for longer than shorter roots because longer roots are more informative access units than shorter ones. By contrast, readers with dyslexia were not expected to be facilitated by longer roots because these roots might exceed dyslexics’ processing capacities. Two groups of Italian 6th graders, with and without dyslexia, read aloud low-frequency derived words, with familiar roots and suffixes. Word reaction times (RTs) and mispronunciations were recorded. Linear mixed-effects regression analyses on RTs showed the inhibitory effect of word length and the facilitating effect of root frequency for both children with and without dyslexia. Root length predicted RTs of typically developing readers only, with faster RTs for longer roots, over and above the inhibitory effect of word length. Furthermore, typically developing children had faster RTs on words with more frequent suffixes while children with dyslexia were faster when roots had a small family size. Generalized linear regression analyses on accuracy showed facilitating effects of word frequency and suffix frequency, for both groups. The large word length effect on latencies confirmed laborious whole-word processing in children when reading low-frequency derived words. The absence of a word frequency effect along with the facilitating effect of root frequency indicated morphemic processing in all readers. The reversed root length effect in typically developing readers pointed to a stronger activation for longer roots in keeping with the idea that these represent particularly informative units for word decoding. For readers with dyslexia the facilitating effect of root frequency (not modulated by root length) confirmed a pervasive benefit of root activation while the lack of root length modulation indicated that the longest roots were for them too large units to be processed within a single fixation.

Highlights

  • In languages with transparent orthography, like Italian, reading through grapheme-to-phoneme conversion rules leads to accuracy levels almost as high as reading through access to lexical representations, but it may be more time consuming

  • We proposed that children with limited reading ability may find morphemes useful because morphemes are reading units of an intermediate grain size with respect to graphemes on the one side and words on the other: Morphemes are larger reading units than single graphemes but at the same time they are shorter reading units as compared to the word, which is too long for them to be processed in a single fixation as a whole

  • The effect of root length was in the opposite direction (b = −0.01, t = −2.02, p = 0.047), as increases in root length were associated to faster reaction times (RTs)

Read more

Summary

Introduction

In languages with transparent orthography, like Italian, reading through grapheme-to-phoneme conversion rules leads to accuracy levels almost as high as reading through access to lexical representations, but it may be more time consuming. Most Italian children with developmental dyslexia show an extremely slow and analytical reading behavior (Zoccolotti et al, 1999, 2005), which is probably due to a massive use of the extra-lexical route. They typically make several small amplitude saccades accompanied by long-lasting fixations within a word (De Luca et al, 1999, 2002; see Hutzler and Wimmer, 2004). As a consequence of their formal and lexical characteristics, morphemes can be exploited to increase reading fluency (see Deacon et al, 2016)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.