Abstract
The accuracy of deuterium nuclear data is important for reactor physics simulations of heavy water (D2O) reactors. The elastic neutron scattering cross section data at thermal energies, σs,th, have been observed to have noticeable impact on the reactivity values in simulations of critical systems involving D2O. We discuss how the uncertainties in the thermal scattering cross sections of 2H(n,n)2H and 16O(n,n)16O propagate to the uncertainty of the calculated neutron multiplication factor, keff, in thermal critical assemblies with heavy water neutron moderator/reflector. The method of trial evaluated nuclear data files, in which specific cross sections are individually perturbed, is used to calculate the sensitivity coefficients of keff to the microscopic nuclear data, such as σs(E) characterized by σs,th. Large reactivity differences of up to ≃ 5–10 mk (500–1000 pcm) were observed using 2H and 16O data files with different elastic scattering data in MCNP5 simulations of the LANL HEU heavy-water solution thermal critical experiments included in the ICSBEP handbook.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.