Abstract

Abstract: While set-associative caches typically incur fewer misses than direct-mapped caches, set-associative caches have slower hit times. We propose the reactive-associative cache (r-a cache), which provides flexible associativity by placing most blocks in direct-mapped positions and reactively displacing only conflicting blocks to set-associative positions. The r-a cache uses way-prediction (like the predictive associative cache, PSA) to access displaced blocks on the initial probe. Unlike PSA, however, the r-a cache employs a novel feedback mechanism to prevent unpredictable blocks from being displaced. Reactive displacement and feedback allow the r-a cache to use a novel PC-based way-prediction and achieve high accuracy; without impractical block swapping as in column associative and group associative, and without relying on timing-constrained XOR way prediction. A one-port, 4-way r-a cache achieves up to 9% speedup over a direct-mapped cache and performs within 2% of an idealized 2-way set-associative, 1-cycle cache. A 4-way r-a cache achieves up to 13% speedup over a PSA cache, with both r-a and PSA using the PC scheme. CACTI estimates that for sizes larger than 8KB, a 4-way r-a cache is within 1% of direct-mapped hit times, and 24% faster than a 2-way set-associative cache.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.