Abstract

A major class of resistive memory devices is based on transition metal oxides, where mobile oxygen vacancies allow these devices to exhibit multiple resistance states. Ta2O5 based devices in particular have recently demonstrated impressive endurance and forming-free results. Deposition of substoichiometric Ta2Ox (x < 5) films is a critical process in order to produce the required oxygen vacancies in these devices. This paper describes a physical vapor deposition (PVD) reactive sputtering process to deposit substoichiometric Ta2Ox films. The desired film stoichiometry is achieved by feedback control of the oxygen partial pressure in the PVD chamber. A calibration procedure based on Rutherford backscattering spectroscopy is described for locating the optimum oxygen partial pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.