Abstract

Taking account of the mutual impacts of distributed generation and reactive power, to determine the optimal position and capacity of the compensation device to be installed, the paper proposed an improved Tabu search algorithm for reactive power optimization. The voltage quality is considered of the model using minimum network active power loss as objective Function. It is achieved by maintaining the whole system power loss as minimum thereby reducing cost allocation. On the basis of general Tabu search algorithm, the algorithm used memory guidance search strategy to focus on searching for a local optimum value, avoid a global search blindness. To deal with the neighborhood solution set properly and save algorithm storage space , some corresponding improvements are made, thus, it is easily to stop the iteration of partial optimization and it is more probable to achieve the global optimization by use of the improved algorithm. Simulations are carried out on standard IEEE 33 test system and results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.