Abstract
Combination chemotherapy is a common strategy to enhance treatment efficacy and avoid multidrug resistance (MDR) in clinical practice. However, it is difficult to ensure the co-enrichment and reasonable ratio of synergistic drugs in the lesion site after intravenous administration. Integrating synergistic drugs into a nanocarrier can improve drug stability, targeting, drug loading, and importantly, ensure that synergistic drugs work at one destination. This study uses 10-hydroxycamptothecin (HCPT) to construct a polymeric prodrug micelle, and the demethylcantharidin (DMC) is proportionally encapsulated within the micelle. Triggered by reactive oxygen species (ROS), HCPT and DMC were released simultaneously from the co-delivery platform in tumor cells. DMC promotes abnormal cell division by inhibiting the synthesis of the cell cycle checkpoint kinase Protein phosphatase 2A (PP2A), leading to increased cell vulnerability to DNA damage, disordered replication, and death. The co-delivery platform exhibited satisfactory biosafety and antitumor efficacy in vivo. The proposed co-delivery platform may provide a valuable reference for the translation of clinical combination chemotherapy regimens into nano-drug delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.