Abstract

Illumination of Chlamydomonas reinhardtii cells at 1000 (high light, HL) or 3000 (very high light, VHL) µmol photons m(-2) s(-1) intensity increased superoxide anion radical (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) production, and VHL illumination also increased the singlet oxygen ((1)O(2)) level. HL and VHL illumination decreased methionine sulfoxide reductase A4 (CrMSRA4) transcript levels but increased CrMSRA3, CrMSRA5 and CrMSRB2.1 transcripts levels. CrMSRB2.2 transcript levels increased only under VHL conditions. The role of reactive oxygen species (ROS) on CrMSR expression was studied using ROS scavengers and generators. Treatment with dimethylthiourea (DMTU), a H(2)O(2) scavenger, suppressed HL- and VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.1 expression, whereas H(2)O(2) treatment stimulated the expression of these genes under 50 µmol photons m(-2) s(-1) conditions (low light, LL). Treatment with diphenylamine (DPA), a (1)O(2) quencher, reduced VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.2 expression and deuterium oxide, which delays (1)O(2) decay, enhanced these gene expression, whereas treatment with (1)O(2) (rose bengal, methylene blue and neutral red) or O(2)(•-) (menadione and methyl viologen) generators under LL conditions induced their expression. DPA treatment inhibited the VHL-induced decrease in CrMSRA4 expression, but other ROS scavengers and ROS generators did not affect its expression under LL or HL conditions. These results demonstrate that the differential expression of CrMSRs under HL illumination can be attributed to different types of ROS. H(2)O(2), O(2) (•-) and (1)O(2) modulate CrMSRA3 and CrMSRA5 expression, whereas H(2)O(2) and O(2)(•-) regulate CrMSRB2.1 and CrMSRB2.2 expression, respectively. (1)O(2) mediates the decrease of CrMSRA4 expression by VHL illumination, but ROS do not modulate its decrease under HL conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.