Abstract

Much evidence has shown that reactive oxygen species (ROS) regulate several plant hormone signaling cascades, but little is known about the real-time kinetics and the underlying molecular mechanisms of the target proteins in the brassinosteroid (BR) signaling pathway. In this study, we used single-molecule techniques to investigate the true signaling timescales of the major BR signaling components BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINOSTEROID INSENSITIVE 2 (BIN2) of Arabidopsis thaliana. The rate constants of BIN2 associating with ATP and phosphorylating BES1 were determined to be 0.7±0.4mM-1 s-1 and 2.3±1.4s-1 , respectively. Interestingly, we found that the interaction of BIN2 and BES1 was oxygen-dependent, and oxygen can directly modify BIN2. The activity of BIN2 was switched on via modification of specific cysteine (Cys) residues, including C59, C95, C99 and C162. The mutation of these Cys residues inhibited the BR signaling outputs. These findings demonstrate the power of using single-molecule techniques to study the dynamic interactions of signaling components, which is difficult to be discovered by conventional physiological and biochemical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.