Abstract

Production of reactive oxygen species (ROS) results in up-regulation of the extracellular signal-regulated kinase (ERK) cascade in response to numerous stimuli. Cerebral ischemia induces calcium-dependent kinase activation followed by ROS production. Here, we examined how ROS mediates the activation of ERK following cerebral ischemia in the rat hippocampus. We found that alpha-tocopherol, a free radical scavenger, attenuated the initial, robust activation of ERK by inhibiting Raf-1 dephosphorylation at Ser259. Alpha-tocopherol also down-regulated the second and mild activation of ERK through inhibition of Src-dependent phosphorylation of Raf-1 at Tyr340/341. Our results suggest that ROS production mediates the biphasic activation of ERK through different signaling cascades following post-ischemic reperfusion. Mediation of these signaling pathways involves changes in Raf-1 phosphorylation at different sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.