Abstract

The significant promoting effects of some prenylflavonoids on cardiac differentiation of mouse embryonic stem (ES) cells via reactive oxygen species (ROS) signaling pathway were investigated. The most effective differentiation was facilitated by icariin (ICA), followed by icaritin (ICT), while desmethylicaritin (DICT) displayed the weakest but still significant inducible effect. Contrarily, DICT demonstrated the strongest anti-oxidative activity while ICA displayed only little in vitro, which was well matched with the hydroxyl (OH) numbers and the positions in the molecular structures. Therefore, ROS signaling cascades were assumed to be involved in prenylflavonoids induced cardiomyogenesis. Treatment with ICA, intracellular ROS in embryoid bodies was rapidly elevated, which was abolished by the NADPH-oxidase inhibitor apocynin; elimination of intracellular ROS by vitamin E or pyrrolidine dithiocarbamate (PDTC) inhibited ICA induced cardiomyogenesis; ROS-sensitive extracellular-regulated kinase 1, 2 (ERK1, 2) and p38 activation were further observed, the cardiomyogenesis was significantly inhibited in the presence of ERK1, 2 or p38 inhibitor U0126 or SB203580, indicating the roles of NADPH-ROS-MAPKs signaling cascades in prenylflavonoids induced cardiac differentiation. There was no difference in Nox4 NADPH oxidase expression between ICA and ICT treatments, however, ROS concentration in EBs after ICT administration was lower than that after ICA treatment, followed by less activation of ERK1, 2, and p38. These results revealed that the significant promoting effects of prenylflavonoids on cardiac differentiation was at least partly via ROS signaling cascades, and the facilitating abilities preferentially based on the nature of prenylflavonoids themselves, but anti-oxidative activity determined by the OH numbers and the positions in the structures do influence the cardiomyogenesis in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.