Abstract

In this study, we examined whether blocking spinal cord injury (SCI)-induced increases in reactive oxygen species (ROS) by a ROS scavenger would attenuate below-level central neuropathic pain and promote recovery of locomotion. Rats with T10 SCI developed mechanical allodynia in both hind paws and overproduction of ROS, as assayed by Dhet intensity, in neurons in the lumbar 4/5 dorsal horn (∗P<0.05). To scavenge ROS, phenyl-N-tert-butylnitrone (PBN, a ROS scavenger) was administered immediately after SCI and for 7 consecutive days (early treatment) by either intrathecal (it; 1 and 3mg) or systemic (ip; 10, 50 and 100mg) injections. In addition, the high doses of it (3mg) or ip (100mg) injections were performed at 35days (delayed treatment) after SCI. High doses of PBN (ip, 100mg, and it, 3mg) significantly attenuated mechanical allodynia in both hind paws at both early and delayed treatments, respectively (∗P<0.05). The abnormal hyperexcitability of wide dynamic range neurons after SCI was significantly attenuated by both early and delayed PBN treatment (∗P<0.05). Early PBN treatment (100mg, ip, and 3mg, it) attenuated overproduction of ROS in neurons in the lumbar 4/5 dorsal horn. In addition, it and ip t-BOOH (ROS donor) treatment dose-dependently produced mechanical allodynia in both hind paws (∗P<0.05). Both SCI and t-BOOH treatment groups showed significantly increased phospho-CamKII (pCamKII) expression in neurons and KN-93 (an inhibitor of pCamKII) significantly attenuated mechanical allodynia (∗P<0.05). In addition, high doses of PBN significantly promoted the recovery of locomotion (∗P<0.05). In conclusion, the present data suggest that overproduction of ROS contribute to sensory and motor abnormalities in remote segments below the lesion after thoracic SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.