Abstract
The innate immune system is the first line of defense against pathogens and is characterized by its fast but nonspecific response. One important mechanism of this system is the production of the biocidal reactive oxygen and nitrogen species, which are widely distributed within biological systems, including phagocytes and secretions. Reactive oxygen and nitrogen species are short-lived intermediates that are biochemically synthesized by various enzymatic reactions in aerobic organisms and are regulated by antioxidants. The physiological levels of reactive species play important roles in cellular signaling and proliferation. However, higher concentrations and prolonged exposure can fight infections by damaging important microbial biomolecules. One feature of the reactive species generation system is the interaction between its components to produce more biocidal agents. For example, the phagocytic NADPH oxidase complex generates superoxide, which functions as a precursor for antimicrobial hydrogen peroxide synthesis. Peroxide is then used by myeloperoxidase in the same cells to generate hypochlorous acid, a highly microbicidal agent. Studies on animal models and microorganisms have shown that deficiency of these antimicrobial agents is associated with severe recurrent infections and immunocompromised diseases, such as chronic granulomatous disease. There is accumulating evidence that reactive species have important positive aspects on human health and immunity; however, some important promising features of this system remain obscure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.