Abstract

Abstract A reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks (RHs) and SiC powder in different ratios is reported, in which FeSi2 alloy was used as infiltrant. The preforms were heat-treated at 1550 °C for 6 h prior to the infiltration. The coked RHs, which are composed of SiO2 and C, were converted to SiC and poorly crystallized C by carbothermal reduction during the heat treatment. The study of the microstructure and mechanical properties of the composites shows that molten Fe–Si alloy had good wetting of the heat-treated preforms and adequate infiltration properties. Free carbon in the preform reacted with Si in the molten FeSi2 during infiltration forming new SiC, the composition of the intermetallic liquid being moved towards that of FeSi. As a result, the infiltrated composites are composed of SiC, FeSi2 and FeSi phases. Vickers hardness, elastic modulus, three-point flexural strength and indentation fracture toughness of the composites are found to increase with SiC additions up to 30% w/w in the preforms, reaching the values of 18.2 GPa, 290 GPa, 213 MPa and 4.9 MPa m1/2, respectively. With the SiC addition further raised to 45% w/w, the elastic modulus, flexural strength and fracture toughness of the composite turned down probably due to high residual stress and hence the more intense induction of microcracks in the composite. De-bonding of SiC particles pulled out of the Fe–Si matrix, transgranular fracture of part of the SiC particles and in the Fe–Si matrix, and crack bridging all exist in the fracture process of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.