Abstract
Abstract Simulating complex flow situations in hydrogeothermal reservoirs requires coupling of flow, heat transfer, transport of dissolved species, and heterogeneous geochemistry. We present results of simulations for typical applications using the numerical simulator SHEMAT/Processing SHEMAT. Heat transfer is non-linear, since all thermal fluid and rock properties depend on temperature. Due to the coupling of fluid density with both temperature and concentrations of dissolved species, the model is well suited to simulate density-driven flow. Dissolution and precipitation of minerals are calculated with an improved version of the geochemical modelling code PHRQPITZ, which accurately calculates geochemical reactions in brines of low to high ionic strength and temperatures of 0–150°C. Changes in pore space structure and porosity are taken into account by updating permeability with respect to porosity changes due to precipitation and dissolution of minerals. This is based on a novel relationship between porosity and permeability, derived from a fractal model of the pore space structure and its changes due to chemical water — rock interaction. A selection of model studies performed with SHEMAT completes the review. Examples highlight both density-driven and reactive flow with permeability feedback. With respect to the former, the thermohaline free convection Elder’s problem, and density-driven free convection in a coastal aquifer with geothermal exploitation, are considered. Mineral redistribution and associated permeability change during a core flooding experiment; reaction front fingering in reservoir sandstone; and long-term changes in reservoir properties during the operation of a geothermal installation, are all considered in relation to reactive flow with permeability feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.