Abstract
This research work focuses on the synthesis, spectroscopic characterization, DFT studies, and in silico molecular docking of two azo compounds; (E)-6-((4,6-dichloro-1,3,5-triazin-2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalen-2-yl hydrogen sulfite (compound A) and (E)-6-((4,6-dichloro-1,3,5-triazin-2-yl)amino)-3-((4-formylphenyl)diazenyl)-4-hydroxynaphthalen-2-yl hydrogen sulfite (compound D) to determine their application as chemotherapeutic drug for the treatment of the malignant glioblastoma multiforme (GBM). The experimental and theoretical vibrational wavenumbers of the synthesized compounds were compared and observed to be in good agreement. Density functional theory (DFT) at the B3LYP/6-311++G(d,p) level of theory was further utilized to investigate the frontier molecular orbitals, Fukui reactivity functions, excitation energies, and the natural bond orbital (NBO) analysis for the investigation of the bonding interactions of the studied compounds. The binding affinities of the studied compounds and the standard drug (temozolomide) against four different GBM proteins: 6bft, 6s79, 1Is5, and 1z2b was investigated using in silico molecular docking approach. Compound A displayed the highest relative binding affinities of -8.7 and -8.6 with 6s79 and 1Is5 proteins respectively compared to compound D with the binding affinity of -7.6. Both compounds A and D showed little to no interaction with 1z2b protein but their binding affinities with 6bft, 6s76 and 1Is5 proteins are relatively higher than those of the standard drug. Pharmacological studies also showed that both compounds exhibit good solubility in water resulting in good lipophilicity. With the obtained results, it is safe to say that the compounds and their derivatives could be considered as a potential chemotherapeutic drug for the treatment of glioblastoma or as a precursor for the synthesis of other pharmaceutical products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.