Abstract

Hydroxyl radicals (OH) determine the tropospheric self-cleansing capacity, thus regulating air quality and climate. However, the state-of-the-art mechanisms still underestimate OH at low nitrogen oxide and high volatile organic compound regimes even considering the latest isoprene chemistry. Here we propose that the reactive aldehyde chemistry, especially the autoxidation of carbonyl organic peroxy radicals (R(CO)O2) derived from higher aldehydes, is a noteworthy OH regeneration mechanism that overwhelms the contribution of the isoprene autoxidation, the latter has been proved to largely contribute to the missing OH source under high isoprene condition. As diagnosed by the quantum chemical calculations, the R(CO)O2 radicals undergo fast H-migration to produce unsaturated hydroperoxyl-carbonyls that generate OH through rapid photolysis. This chemistry could explain almost all unknown OH sources in areas rich in both natural and anthropogenic emissions in the warm seasons, and may increasingly impact the global self-cleansing capacity in a future low nitrogen oxide society under carbon neutrality scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.