Abstract

Composites of a copper-based metal-organic framework (MOF) and graphite oxide (GO) were tested for NO2 adsorption and retention of NO in dry and moist conditions. The samples were analyzed before and after exposure to NO2 by thermal analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and adsorption of nitrogen at -196 °C. In dry conditions, the composites exhibit an enhanced NO2 breakthrough capacity compared to MOF and GO separately. This improvement is linked to the increased porosity and the reactive adsorption of NO2 on copper, which leads to the formation of bidentate and monodentate nitrate. Even though less NO2 is adsorbed in moist conditions than in dry ones, the materials are more stable than in dry conditions and the NO retention is enhanced. Water in the challenge gas competes with NO2 to bind to copper, and thus, the number of reactive adsorption sites on which NO2 can be adsorbed/reacted decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.