Abstract

Cardiomyocytes cease to divide shortly after birth and an irreversible cell cycle arrest is evident accompanied by the downregulation of cyclin-dependent kinase activities. To get a better understanding of the cardiac cell cycle and its regulation, the effect of functional recovery of the mitosis-promoting factor (MPF) consisting of cyclin B1 and the cyclin-dependent kinase Cdc2 was assessed in primary cultures of postmitotic ventricular adult rat cardiomyocytes (ARC). Gene transfer into ARC was achieved using the adenovirus-enhanced transferrinfection system that was characterized by the absence of cytotoxic events. Simultaneous ectopic expression of wild-type versions of cyclin B1 and Cdc2 was sufficient to induce MPF activity. Reestablished MPF resulted in a mitotic phenotype, marked by an abnormal condensation of the nuclei, histone H3 phosphorylation and variable degree of decay of the contractile apparatus. Although a complete cell division was not observed, the results provided conclusive evidence that cell cycle-related events in postmitotic cardiomyocytes could be triggered by genetic intervention downstream of the G1/S checkpoint. This will be of importance to design novel strategies to overcome the proliferation arrest in adult cardiomyocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.