Abstract

Given that H(2)O dissolves minimally in quartz, the mechanism for the ubiquitous dissolution of H(2)O in silica glasses has been a long-standing puzzle. We report first-principles calculations in prototype silica glass networks and identify the ring topologies that allow the exothermic dissolution of H(2)O as geminate Si-O-H groups. The topological constraints of these reactions explain both the observed saturation of Si-O-H concentrations and the observed increase in the average Si-Si distance. In addition, calculations of H(2)O and Si-O-H dissociation account for the observed response to radiation by wet thermally grown SiO(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.