Abstract

In metallic U-Pu-Zr fuel for fast reactors, metallurgical reactions occur between the fuel alloy and the stainless steel cladding, and a liquid phase may be formed in the reaction zone at a higher temperature. In order to clarify the condition for liquefaction at the fuel-cladding interface, the reactions of U-Pu alloys with Fe have been examined at 923 and 943 K. The test results confirmed that the liquid phase is not formed at 923 K in any region of the reaction zone when the maximum Pu content in the (U,Pu)6Fe phase is less than the Pu solubility limit in this phase. Comparison of the present test results with the liquefaction data from the various tests on metallic fuel-cladding compatibility suggested that the liquefaction condition is independent of the Zr content in the fuel alloy and can be expressed as a function of the atom fraction ratio of Pu/(U+Pu) in the fuel alloy and the reaction temperature. At 923 K, liquefaction will occur when the Pu/(U+Pu) ratio is larger than 0.25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.