Abstract

ABSTRACTWe investigated the phase separation, cure kinetics and thermomechanical properties of diglycidyl ether of bisphenol‐A/4,4′‐diaminodiphenylsulfone/poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer (TBCP) blends. Fourier transform infrared spectroscopy, differential scanning calorimetry, and atomic force microscopy revealed that the blends exhibited heterogeneous phase morphology in which the TBCP formed dispersed domains in epoxy matrix, due to reaction induced phase separation. A fraction of phase‐separated PEO phase underwent partial crystallization whereas another fraction formed interphases between the dispersed domains and epoxy matrix. Moreover, the dispersed PEO chains improved the compatibility and interfacial adhesion between the matrix and domains and, consequently, significantly improved the mechanical properties of epoxy resin. Furthermore, the thermal degradation studies and contact angle measurements disclosed that the dispersed domains were well protected by the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44406.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.