Abstract
Treatment of the diphosphine ligand 1,2-bis(diphenylphosphino)cyclobutenedione (bpcbd) with the THF adduct fac-BrRe(CO)3(THF)2 at room temperature furnishes the new dirhenium compound [BrRe(CO)3]2(bpcbd) instead of the expected mononuclear compound fac-BrRe(CO)3(bpcbd). [BrRe(CO)3]2(bpcbd) was characterized in solution by IR spectroscopy, and the solid-state structure was solved by X-ray crystallography. [BrRe(CO)3]2(bpcbd), as the CH2Cl2 solvate, crystallizes in the space group P\(\overline {\text{1}} \), a = 11.173(1), b = 13.362(1), c = 15.250(1) A, α = 108.973(7)°, β = 99.477(8)°, γ = 110.466(7)°, V = 1915.0(3) A3, Z = 2, and dcalc = 2.143 g-cm−3. The structure of [BrRe(CO)3]2(bpcbd) consists of two rhenium centers that are six-coordinate and possess nearly ideal octahedral geometry. The two Re(CO)3 units are linked together by the bridging diphosphine ligand and two bridging bromide groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.