Abstract
The use of light to directly reduce CO2 in the atmosphere is the actual development trend of photocatalysis applications in the future. However, it is still in the initial stage of exploration. In this work, oleylamine is used as a template in a one-step hydrothermal method to obtain the N-doped CoO catalyst that can be used to efficiently reduce CO2 in air. N-doped CoO achieves ultrahigh CO2 conversion efficiency (about 75%), amazing CO yield (2.902 mmol g–1 h–1), and superior CO conversion frequency (TOFCO > 300) in air. However, in a 0.03% simulated atmosphere (Ar/CO2), the CO precipitation rate drops by 18 times, while the H2 precipitation rate increases significantly. Quasi-in situ spectroscopy and experimental studies show that O2 in the CO2 reduction process will promote the formation of an amorphous layer with a small number of hydroxyl groups on the surface of N-doped CoO. This amorphous/crystalline interface will effectively promote the catalytic reduction of CO2. This work has inspired further research on the photoreduction process of low-concentration CO2 in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.