Abstract

The possible reaction mechanisms for CO oxidation on the perfect Cu(2)O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu(2)O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as M(ER1), M(ER2), M(LH1), and M(LH2), respectively): M(ER1) is CO((gas))+O(2(ads))→CO(2(gas)); M(ER2) is CO((gas))+O(2(ads))→CO(3(ads))→O((ads))+CO(2(gas)); M(LH1) refers to CO((ads))+O(2(ads))→O((ads))+CO(2(ads)); and M(LH2) refers to CO((ads))+O(2(ads))→OOCO((ads))→O((ads))+CO(2(ads)). Our transition state calculations clearly reveal that M(ER1) and M(LH2) are both viable; but M(ER1) mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along M(ER2) path, it is facile for CO(3) formation, but is difficult for its decomposition, thereby CO(3) species can stably exist on Cu(2)O(111). Of course, the reaction of CO with lattice O of Cu(2)O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu(2)O(111), CO reacts with adsorbed O, rather than lattice O, to form CO(2). This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.