Abstract
Reaction kinetics are presented for the reversible esterification reaction of citric acid with ethanol to form tri-ethyl citrate via mono-ethyl and di-ethyl citrates. The reaction was studied in batch isothermal experiments, self-catalyzed homogeneously by citric acid and the formed mono- and di-ethyl citrates, and heterogeneously catalyzed by macroporous Amberlyst-15 ion-exchange resin catalyst. Experimental data were obtained between 78 and 120 °C at different mole ratios of ethanol to citric acid and catalyst concentrations up to 5 wt % ion-exchange resin. The kinetics of ethanol etherification to form di-ethyl ether were included in the investigation. Kinetic modeling was performed using a pseudo-homogeneous UNIQUAC-based activity model, taking into consideration the rate of self-catalyzed esterification and the side reaction to form diethyl ether. The activity coefficients for the tri-ethyl citrate−ethanol and tri-ethyl citrate−water binary pairs were obtained from experimental vapor−liquid equilibri...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.