Abstract
AbstractThe free‐radical reaction kinetics and microgel formation of UV‐curing unsaturated polyester acrylates were studied in terms of the effects of internal maleic and terminal acrylate unsaturations. A triacrylate‐functional monomer, trimethylolpropane triacrylate, was used as the reactive diluent. A time‐resolved Fourier transform infrared technique was used to evaluate the consumption of double bonds and showed that internal (maleic) double bonds were involved in microgel formation at a rate similar to that of the more reactive terminal (acrylic) double bonds. Dynamic light scattering was used to measure the microgel particle size. The introduction of internal unsaturations caused smaller microgels, whereas terminal acrylate unsaturations resulted in larger particle sizes. These results were attributed to the higher tendency of the internal maleic double bonds toward intramolecular cyclization reactions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6544–6557, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.