Abstract

We present the long-term stability of the integrating sphere cold atom clock (ISCAC) and analyze its systematic limitations. The relative frequency instability of 2.6×10−15 is reached for an averaging time of 2×105 s. The second-order Zeeman effect and the cavity pulling effect in ISCAC, which would induce the frequency drift from the clock transition, are analyzed. The analytical and experimental results indicate that the cavity pulling effect is the main contribution to the long-term frequency instability of the ISCAC. Further technical improvements to the microwave cavity are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.