Abstract

The reachability analysis of recursive programs that communicate asynchronously over reliable Fifo channels calls for restrictions to ensure decidability. We extend here a model proposed by La Torre, Madhusudan and Parlato [16], based on communicating pushdown systems that can dequeue with empty stack only. Our extension adds the dual modality, which allows to dequeue with non-empty stack, and thus models interrupts for working threads. We study (possibly cyclic) network architectures under a semantic assumption on communication that ensures the decidability of reachability for finite state systems. Subsequently, we determine precisely how pushdowns can be added to this setting while preserving the decidability; in the positive case we obtain exponential time as the exact complexity bound of reachability. A second result is a generalization of the doubly exponential time algorithm of [16] for bounded context analysis to our symmetric queueing policy. We provide here a direct and simpler algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.