Abstract

Nicro-motor voice signal contains abundant running status information as well as vibration signal, aiming at the problem that it is difficult to obtain vibration signal in the production line of micro-motor, this paper proposes a micro-motor acoustic fault diagnosis methods based on loose wavelet neural network. Wavelet packet decomposition and reconstruction algorithm is utilized to extract micro-motor voice signals in each frequency band energy as the characteristic parameters of fault characteristic parameter samples will input to improve the BP neural network for training, build up the fault type of classifier, the realization of fault intelligent diagnosis. Application results show that a reasonable design of neural network has strong ability of fault identification; use loose micro-motor acoustic wavelet neural network fault diagnosis is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.