Abstract

Corneal damage‐induced various wavelength UV (311, 254, 235, 222 and 207 nm) was evaluated in rats. For 207 and 222‐UV‐C, the threshold radiant exposure was between 10 000 and 15 000 mJ cm−2 at 207 nm and between 3500 and 5000 mJ cm−2 at 222 nm. Penetrate depth to the cornea indicated by cyclobutene pyrimidine dimer (CPD) localization immediately after irradiation was dependent on the wavelength. 311 and 254 nm UV penetrate to corneal endothelium, 235 nm UVC to the intermediate part of corneal stroma, 222 and 207 nm UVC only to the most outer layer of corneal epithelium. CPD observed in corneal epithelium irradiated by 222 nm UVC disappeared until 12 h after. The minimum dose to induce corneal damage of short‐wavelength UV‐C was considerably higher than the threshold limit value (TLV®) promulgated by American Conference of Governmental Industrial Hygienists (ACGIH). The property that explains why UV‐C radiation at 207 and 222 nm is extremely less hazardous than longer UV wavelengths is the fact that this radiation only penetrates to the outermost layer of the corneal epithelium. These cells typically peel off within 24 h during the physiological turnover cycle. Hence, short‐wavelength UV‐C might be less hazardous to the cornea than previously considered until today.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.