Abstract
The Rayleigh-Taylor instability is a gravitational instability in two fluids where the heavier fluid is set over the lighter fluid. The instability occurs both in classical fluids and quantum fluids. We numerically study the Rayleigh-Taylor instability using coupled Gross-Pitaevskii equations for two-component Bose-Einstein condensates. We carry out numerical simulations that the heavier component is set in a torus initially which is surrounded by the lighter component. When the torus falls, the Rayleigh-Taylor instability develops and a sagging pattern appears. This instability is investigated for the two cases with and without a vortex ring inside the torus. We find that a vortex ring suppresses the instability when the radius of the torus is small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.