Abstract

Rayleigh-Benard convection due to buoyancy that occurred in a horizontal binary fluid layer saturated anisotropic porous media is investigated numerically. The system is heated from below and cooled from above. The temperature-dependent viscosity effect was applied to the double-diffusive binary fluid and the critical Rayleigh number for free-free, rigid-free, and rigid-rigid representing the lower-upper boundary were obtained by using the single-term Galerkin expansion procedure. Both boundaries are conducted to temperature. The effect of temperature-dependent viscosity, mechanical anisotropy, thermal anisotropy, Soret, and Dufour parameters on the onset of stationary convection are discussed and shown graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.