Abstract

AbstractWe prove the finite generation of the monoid of effective divisor classes on a smooth projective rational surface X endowed with an anticanonical divisor such that all its irreducible components are of multiplicity one except one which has multiplicity two. In almost all cases, the self-intersection of a canonical divisor KX on X is strictly negative, hence - KX is neither ample nor numerically effective. In particular, X is not a Del Pezzo surface. Furthermore, it is shown that the first cohomology group of a numerically effective divisor vanishes; as a consequence, we determine the dimension of the complete linear system associated to any given divisor on X

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.