Abstract

AbstractLet m, n be nonnegative integers and B(m+n) be a set of m + n + 1 real interpolation points (not necessarily distinct). Let Rm,n = Pm,n/Qm.n be the unique rational function with deg Pm,n ≤ m, deg Qm,n ≤ n, that interpolates ex in the points of B(m+n). If m = mv, n = nv with mv + nv → ∞, and mv / nv → λ as v → ∞, and the sets B(m+n) are uniformly bounded, we show that locally uniformly in the complex plane C, where the normalization Qm,n(0) = 1 has been imposed. Moreover, for any compact set K ⊂ C we obtain sharp estimates for the error |ez — Rm,n(z)| when z ∈ K. These results generalize properties of the classical Padé approximants. Our convergence theorems also apply to best (real) Lp rational approximants to ex on a finite real interval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.